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It is well known that chronic diseases such as 
cancer arise from the combination of several 
risk factors, including environmental expo-
sures and genetic susceptibilities. An analytical 
approach that does not investigate complex 
multifactor effects is likely to be ineffective in 
explaining the onset of most common diseases. 
However, the investigation of interactions with 
traditional statistical methods has limitations 
related to low power and model constraints.

We have extended profile regression 
(Molitor et  al. 2010), a novel Bayesian 
approach for the study of the joint effect of 
several covariates, to the case–control study 
design and have applied it to the investiga-
tion of lung cancer risk factors in nonsmokers 
within the European Prospective Investigation 
into Cancer and Nutrition (EPIC). This 
multicenter European study was coordinated 
by the International Agency for Research 
on Cancer and Imperial College London. 
More than 520,000 healthy volunteers were 
recruited in ten European countries (for a 
detailed description of EPIC, see Bingham 
and Riboli 2004). We analyzed both envi-
ronmental and lifestyle exposures (air pollut-
ants, physical activity, anthropometry) and 
genetic susceptibility (candidate genes). All 
of these variables were expected to be weak 
risk factors individually. We restricted our 
analysis to never smokers and ex-smokers 

who quit smoking at least 10 years prior to 
enrollment. We removed current and recent 
smokers from the analysis because the large 
effect of smoking can potentially mask the 
effect of other important risk factors.

Materials and Methods
Subjects. GEN-AIR (molecular changes and 
genetic susceptibility in relation to air pollu-
tion and environmental tobacco smoke) is a 
case–control study nested within the EPIC 
cohort; its aim is to study the relationship 
between various types of cancer and air pol-
lution or environmental tobacco smoke. All 
cancers were diagnosed after recruitment. 
Only nonsmokers or ex-smokers who had not 
smoked for more than 10 years before enroll-
ment were included in GEN-AIR. This cut-
off point has been set in order to control for 
the potential residual confounding effect of 
smoking in ex-smokers. Three controls were 
matched per case. Matching criteria were 
sex, age (± 5 years), smoking status (never or 
former smoker), country of recruitment, and 
follow-up time. The number of subjects that 
met the protocol criteria was 4,051 (1,074 
cases and 2,977 controls). The mean follow-
up time for those GEN-AIR subjects was 89 
months, with a minimum of 51 months and 
a maximum at 123 months (Matullo et al. 
2006). The present study is on lung cancer 

only in nonsmokers (271 cases and 2,977 
controls). Biological samples were obtained 
and DNA extracted to investigate whether 
lung cancer is associated with candidate sin-
gle-nucleotide polymorphisms (SNPs) or with 
DNA adducts, which are markers of DNA 
damage. We had DNA available for 116 cases 
and 1,076 controls (the center in Malmo did 
not provide DNA; see Peluso et al. 2005). 
Matching on time since biological sample 
was collected (± 6 months, two controls per 
case) was introduced to avoid bias due to 
differences in sample degradation between 
cases and controls. We have complied with all 
applicable requirements of international regu-
lations (including institutional review board 
approval). Human participants gave informed 
consent before the study.

Environmental factors. As environmental 
factors of interest, we chose to include in our 
analysis three exposure variables related to 
air pollution, two characteristics of physical 
activity, and one anthropometric variable. 
We did not include information on environ-
mental tobacco smoke because it was missing 
for a large number of participants and would 
have reduced the sample size available for 
profile regression analysis from 829 to 665 
observations.

The association between air pollution 
and lung cancer has been studied in previ-
ous cohorts (Hoek et al. 2002) and in EPIC 
(Vineis and Husgafvel-Pursiainen 2005). 
We included in our analysis three measures 
of exposure to air pollution: residence on a 
main road (yes or no; detailed Internet maps 
were used to define if a home was located in a 
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Background: Profile regression is a Bayesian statistical approach designed for investigating the 
joint effect of multiple risk factors. It reduces dimensionality by using as its main unit of inference 
the exposure profiles of the subjects that is, the sequence of covariate values that correspond to 
each subject.

Objectives: We applied profile regression to a case–control study of lung cancer in nonsmokers, 
nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, 
to estimate the combined effect of environmental carcinogens and to explore possible gene–
environment interactions.

Methods: We tailored and extended the profile regression approach to the analysis of case–control 
studies, allowing for the analysis of ordinal data and the computation of posterior odds ratios. We 
compared and contrasted our results with those obtained using standard logistic regression and clas-
sification tree methods, including multifactor dimensionality reduction.

Results: Profile regression strengthened previous observations in other study populations on the 
role of air pollutants, particularly particulate matter ≤ 10 μm in aerodynamic diameter (PM10), in 
lung cancer for nonsmokers. Covariates including living on a main road, exposure to PM10 and 
nitrogen dioxide, and carrying out manual work characterized high-risk subject profiles. Such com-
binations of risk factors were consistent with a priori expectations. In contrast, other methods gave 
less interpretable results.

Conclusions: We conclude that profile regression is a powerful tool for identifying risk profiles 
that express the joint effect of etiologically relevant variables in multifactorial diseases.
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major street with validation using traffic count 
data from municipalities, local environmental 
agencies, or the Internet); exposure to ambi-
ent particulate matter (PM) air pollution 
[≤ 10 μm in aerodynamic diameter (PM10); 
< 30, 30–40, > 40–50, and > 50 μg/m3]; and 
exposure to nitrogen dioxide (NO2; < 30, 
30–40, and > 40 μg/m3). Air pollution was 
assessed using routine measurements from 
air quality monitoring stations. Exposure 
was measured taking into account residence 
address at the time of enrollment and the 
average concentration of pollutants from the 
nearest monitoring stations (for details on the 
collection of the air pollution data, see Vineis 
et al. 2006).

The relationship between physical activity 
and various types of cancer has also been 
examined in the EPIC cohort, although results 
for lung cancer were not always consistent 
with previous studies in other populations 
(Steindorf et al. 2006). We evaluated two 
aspects of physical activity: physical activity at 
the work place (sedentary, standing occupa-
tion, manual work, or heavy manual work, 
with observations from 67 unemployed sub-
jects of the 4,051 participants in GEN-AIR 
classified as missing), and a variable repre-
senting combined recreational and house-
hold physical activity (low, medium, or 
high based on the computation of sex- and 
center-specific tertiles that were used to rank 
the subjects within a center). In each EPIC 
center, professional and nonprofessional 
physical activity was assessed at baseline as part 
of a standardized questionnaire. In addition, 
we evaluated body mass index (BMI) using 
standard classifications (< 18.5, 18.5–25, and 
> 25 kg/m2). Almost all EPIC centers meas
ured anthropometric factors at enrollment. 
The centers in France used self-reported base-
line measurements of height and weight. The 
self-reported baseline measurements of the vol-
unteers at the Oxford, United Kingdom, cen-
ter were corrected for possible reporting bias 
(for more details on the collection of physical 
activity and anthropometric measurements, 
see Berrington de Gonzales et al. 2006).

Genetic variables. DNA was extracted 
from 200–300 μL buffy coat in the Genova 
and Florence, Italy, laboratories. DNA was iso-
lated and purified as described by Peluso et al. 
(2000). We chose to investigate two genetic 
markers that have been associated with lung 
cancer by other investigators (Matullo et al. 
2006; Vineis et al. 2007): deletion polymor-
phisms in GSTM1 (glutathione S-transferase 
mu 1 gene), and SNP 26304 (rs1799782 
Arg194Trp) in XRCC1 (X-ray repair comple-
menting defective repair in Chinese hamster 
cells 1 gene). Genotyping was performed at 
the University of Aarhus, Denmark (GSTM1) 
and at the Institute for Scientific Interchange 
Foundation in Torino, Italy (XRCC1 26304).

In previous publications, the common 
deletion polymorphism in GSTM1 has been 
associated with the presence of lung cancer 
(Carlsten et al. 2008; Malats et al. 2000). 
The XRCC1 26304 marker is a polymor-
phism in the XRCC1 DNA repair gene. A 
protective effect against lung cancer was sug-
gested by Matullo et al. (2006). Bulky DNA 
adducts are biomarkers of exposure to aro-
matic compounds and of the ability of the 
subject to metabolically activate carcinogens 
(resulting in adduct formation) and to repair 
DNA damage (resulting in adduct elimina-
tion) (Veglia et al. 2008). It is as yet uncertain 
whether DNA adducts predict the develop-
ment of lung cancer. Studies in animals have 
demonstrated a role of DNA adducts in the 
development of tumors (Bartsch 2000). We 
measured bulky DNA adducts using relative 
adduct labeling (Gupta 1985).

Statistical methods. In epidemiological 
studies, even with a moderate number of cova-
riates, it is typically difficult to examine all 
possible interactions with standard regression 
techniques, because estimating a large number 
of parameters is required, and model selection 
quickly becomes cumbersome. Furthermore, 
risk factors are often correlated, which results 
in collinearity problems. Dimension reduc-
tion techniques have focused, broadly speak-
ing, on deriving good prediction using a large 
set of covariates, or on clustering approaches. 
The first approach includes penalized methods 
such as the lasso technique (Tibshirani 1996) 
that select a set of predictors by shrinking the 
estimated effects of some covariates to zero. 
These methods allow the estimation of the 
selected regression coefficients but cause some 
bias. The second class of methods includes 
profile regression, which partitions observa-
tions into clusters that are relatively coherent 
with respect to exposure among observations 
within clusters and dissimilar with respect 
to exposure between clusters (Molitor et al. 
2010). The link between the clusters and the 
outcome is characterized by an association 
parameter. Moreover, profile regression is 
framed in a statistical model-based paradigm 
that allows the computation of multiple esti-
mates of association, including odds ratios 
(ORs) for the outcome for a particular profile 
relative to a baseline (reference) group, and the 
difference in the risk of the outcome between 
two specifically defined covariate combina-
tions, along with appropriate evaluation of 
uncertainty. In this article, we report a com-
prehensive comparison of profile regression 
with logistic regression methods as well as with 
two non–model-based clustering methods, 
classification and regression tree (CART) and 
multifactor dimensionality reduction [(MDR) 
2010)], described in detail below.

Profile regression analysis. Profile regres-
sion (Molitor et  al. 2010) is a statistical 

approach designed specifically for the investi-
gation of the joint effect of a moderate to large 
number of covariates. In profile regression, 
inference is based on how the covariate profiles 
of subjects are clustered into subpopulations, 
revealing important covariate patterns. The 
covariate profile of a subject becomes the basic 
unit of inference and is associated with a risk 
parameter that will be estimated. Clustering 
has been used before for the analysis of cor-
related data; see, for instance, Desantis et al. 
(2008) and Patterson et  al. (2002) where 
Latent Class Analysis was employed. However, 
profile regression combines many recent statis-
tical developments in a novel way, offering a 
number of advantages. First, as a Bayesian pro-
cedure, it allows the investigator to properly 
account for the uncertainty associated with the 
clustering of the subjects. Also, the number 
of clusters is random and not set in advance 
and is informed by the structure of the data 
(Ishwaran and James 2001). Finally, the out-
come of interest influences cluster membership 
so that disease status and covariate patterns 
inform each other.

Our approach consists of an assignment 
submodel and a disease submodel, fitted 
together as a unit. The assignment submodel 
evaluates the probability that an individual 
is assigned to a particular cluster. We focus 
on categorical and ordinal covariates with Mp 
categories for the pth covariate, and denote, 
for individual i, a covariate profile as xi = (x1, 
. . . , xp). Profiles are clustered into groups, and 
an allocation variable, zi = k, indicates the kth 
cluster to which individual i belongs. Let ϕ p

k(x) 
denote the probability that the pth covariate 
in cluster k is equal to x. For each cluster, k, 
the parameters ϕ p

k (x), p = 1, . . . , P define 
the prototypical profile for that cluster. For 
example, a parameter ϕ1

pm10 (> 50 µg/m3) = 0.8 
means that in cluster 1, the probability that a 
subject is exposed to > 50 μg/m3 is 0.8. If 0.8 
is significantly higher than the average prob-
ability for this exposure category in the whole 
sample, then we can interpret group 1 as char-
acterized by subjects who are, on the whole, 
exposed to a relatively high level of PM10.

To implement the assignment model with 
ordinal categories, we generalized the model 
described by Molitor et al. (2010) by intro-
ducing ordered threshold parameters and by 
linking the probabilities of the ordinal cat-
egories to the cumulative distribution of an 
underlying standard normal distribution as 
in Albert and Chib (1993). This specification 
does not force any particular relation between 
categories, other than the order of them [for 
more details, see Supplemental Material, 
Section S1 (doi:10.1289/ehp.1002118)].

To quantify the association between 
exposure groups and presence of disease, we 
assign to the kth cluster a parameter that 
measures its association with the outcome yi 
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for individuals in cluster k; we call this the 
disease submodel. We denote this parameter 
as θk, so that P(yi = 1) = θk and is common 
to all individuals i in group k. For prospec-
tive cohort studies, θk is simply the risk of 
disease associated with the profile of expo-
sure in group k. For case–control studies, 
θk is interpreted as an association parameter 
that quantifies the relation between expo-
sure in group k and presence of disease. To 
adjust for confounders, we adopt a logistic 
regression formulation for the disease model 
logit[P(yi = 1)] = bwi + θk, where b denotes 
the coefficients for the confounder values that 
correspond to subject i. When the logistic 
formulation is adopted, the interpretation 
of the risk parameters θk changes. The risk 
parameters are interpreted as the baseline log 
odds of disease for an individual in group 
k, which is the log odds obtained when all 
confounders are set to their reference value of 
zero (see Molitor et al. 2010). Both clustering 
and disease models are fit in a unified manner 
via Bayesian inference techniques. Following 
standard practice, we have used the prospec-
tive likelihood in our modeling rather than 
a retrospective likelihood. This choice is not 
expected to have any adverse effect on our 
inferences because we consider categorical 
and ordinal risk factors and the relevant prior 
distributions are noninformative (see Seaman 
and Richardson 2004 and references therein).

The parameters of the model are estimated 
using Markov chain Monte Carlo (MCMC) 
methods (Gilks et al. 1996). Note that during 
the MCMC algorithm, we allow the number 
of possible groups to vary and adapt to the 
structure of the data.

After running the algorithm, we then 
derive, for ease of interpretation, an optimal 
number of groups together with an associ-
ated “best” partition of all the individuals into 
these groups. The optimal number of clusters 
is chosen with reference to a similarity matrix 
constructed in such a way that each (i, j) cell 
indicates the percentage of times two indi-
viduals appear in the same cluster throughout 
the run of the sampler. This is an estimate of 
the probability that individuals (i, j) belong 
to the same cluster and is invariant to changes 
in cluster labels or the number of clusters, 
which may vary between MCMC iterations. 
We then use a deterministic algorithm to find 
the clustering that most closely matches this 
similarity matrix [see Supplemental Material, 
Section S1 (doi:10.1289/ehp.1002118), or 
Molitor et al. 2010].

Our postprocessing approach uses the 
rich output of the MCMC sampler to assess 
parameter uncertainty corresponding to the 
subgroups that represent the best clustering. 
For example, suppose we are interested in 
the cancer risk associated with subgroup 1 
in the best clustering, and this subgroup 

contains individuals 1, 3, and 5. We then 
simply calculate, at each iteration of the sam-
pler, the average risk for these individuals. For 
example, 1,000 iterations will generate 1,000 
average risks that can be used to derive this 
subgroup’s posterior distribution for cancer 
risk. If the algorithm generally puts individu-
als 1, 3, and 5 in the same cluster, this pos-
terior distribution will tend to be relatively 
narrow, indicating a relatively high degree of 
certainty. Conversely, if the algorithm usually 
puts these individuals in disparate clusters, 
then the best clustering is less typical and the 
posterior distribution will tend to be relatively 
wide, which indicates greater uncertainty.

We extended the algorithm to deal with 
ordinal data using custom made MATLAB 
code and implementing the sampling 
procedure suggested by Cowles (1996) 
[see Supplemental Material, Section S1 
(doi:10.1289/ehp.1002118)]. [The relevant 
code for the analysis in this article is available 
from the first author on request, it may also be 
downloaded from the Bayesian Gene eXpres-
sion web site (BGX 2010).]

We consider two relative measures to 
better interpret the association of exposure 
profiles with disease status. First, we consider 
the posterior distribution of (θk–θ

–
), where 

θ– is the average risk associated with the whole 
case–control sample in the study. From 
this posterior distribution, we report the 
probability P(θk > θ–) or P(θk < θ–), depend-
ing on whether θk, the risk associated with 
cluster k, is above or below the average risk 
associated with the whole population. A 
probability P(θk > θ–) close to 1 (e.g., > 0.9) 
is interpreted as strong evidence that the kth 
group is associated with higher risk of disease 
than the overall study population. Similarly, a 
probability P(θk < θ–) close to 1 suggests a rela-
tively low-risk group. Second, to be consistent 
with the standard paradigm in case–control 
studies, we extend the computational setup 
described by Molitor et al. (2010) and derive 
the posterior mean of the odds ratio OR(θk, 
θRe) = [θk (1 – θRe)]/[θRe (1 – θk)], compar-
ing the estimated odds of disease for the kth 
group and the odds for a baseline reference 
group (typically set to be the group with the 
lowest risk) together with the corresponding 
95% credible interval for the OR.

MDR and classification tree analysis. 
MDR (Ritchie et al. 2001) is a model-free 
exploratory method for the investigation of 
interrelated risk factors. It was developed 
for the detection of gene–gene and gene– 
environment interactions (see, e.g., Cho et al. 
2004). For interactions of order 2, MDR will 
examine all possible two-factor combinations 
among P covariates, (xp1, xp2), 1 ≤ p1, p2 ≤ P. 
For these two factors, each combination cell is 
characterized as high or low risk, depending on 
whether the ratio of cases to controls exceeds a 

certain threshold with a default value set to 1 
(Hans et al. 2003). This is done using 90% of 
the data. Then, predictions are made for the 
remaining 10% of the data. The proportion of 
subjects for which a correct prediction is made 
is an estimator of the prediction accuracy. In 
fact, to minimize the variance associated with 
the estimates of the prediction accuracy, the 
data are divided in 10 equal parts and the pro-
cedure is repeated 10 times, eventually making 
predictions for the full data set. This 10-fold 
cross-validation procedure concludes with 
averaging the 10 prediction errors. The two 
selected factors are those that maximize the 
prediction accuracy among all pairs of factors. 
A similar procedure is applied to p, 3 ≤ p ≤ P, 
covariates. For the selected p covariates that 
maximize prediction accuracy, MDR gives two 
important scores: the mean prediction accuracy 
and the cross-validation consistency. The lat-
ter is the number of times a specific p-factor 
combination was identified as best in the 10 
testing sets. Of all selected “best” sets of factors, 
containing from 2 to P covariates, the com-
bination of choice should be characterized by 
high prediction accuracy and cross-validation  
consistency.

MDR is a special case of the classification 
and regression tree (CART) model (Bastone 
et al. 2004), where subjects can be classified 
into multiple groups (terminal nodes). We 
also implemented this more general approach, 
as available in the “tree” package of the 
R statistics software (R Development Core 
Team 2006), using the standard recursive 
partitioning model (Foulkes et al. 2004) to 
build a classification tree. This approach typi-
cally consists of a building step, where the 
splits that form the tree are decided, and a 
pruning step, where the size of the tree is 
reduced to achieve model parsimony. For the 
building step we use the “gini” criterion, so 
that the best split of the data in two groups is 
defined as the one that results in the greatest 
reduction of impurity, a quantity that describes 
the heterogeneity of a group of subjects with 
respect to the outcome (Bastone et al. 2004). 
For assessing the validity of splits during prun-
ing we use 5-fold cross-validation, as described 
by Bastone et al. (2004), and choose the tree 
that minimizes the misclassification error. This 
is done by dividing the sample in five parts and 
then averaging the misclassification error across 
the five sets where predictions on the outcome 
are made. This gives an unbiased estimate of 
the misclassification error that corresponds  
to a tree of certain size.

Stepwise logistic regression analysis. 
Logistic regression is the most commonly used 
method for analyzing case–control studies. 
In our analysis, each of the risk factors is first 
introduced separately in a simple univariate 
logistic regression analysis, to individually 
assess how well each predicts the outcome. 
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Next, the main inference proceeds by includ-
ing all potential risk factors in a multivariate 
logistic regression model and using stepwise 
forward and backward selection. Forward 
selection starts with a model that only con-
tains an intercept. Then, at each step, the algo-
rithm adds to the model the covariate with the 
highest significance, given that this covariate 
is deemed to be significant in the presence of 
previously included covariates. Backward selec-
tion starts with the full model that includes all 
covariates. Then, at each step, the algorithm 
removes the covariate with the lowest signifi-
cance, given that this covariate is not signifi-
cant in the presence of the other covariates. 
For all logistic regression analyses we use the 
SPSS statistical software (version 17.0; IBM 
Corporation, Somers, NY, USA). We used the 
default SPSS significance levels: α = 0.05 for 
inclusion and α = 0.1 for removal.

Model fit. To check how well the different 
models fit the data, we used logistic-regres-
sion–type residuals. For a data set of size n, the 
quantity we used for our comparisons was

	 n y pFIT i ii
n1

1= --
=^ h / .	 [1]

[For more details see Supplemental Material, 
section S2 (doi:10.1289/ehp.1002118).]

Results
Analyzed data and missing observations. The 
present study is on lung cancer only. This 
reduced the number of GEN-AIR subjects 
from 4,051 (1,074 cases and 2,977 controls) to 
3,248 (271 cases and 2,977 controls). We per-
formed the laboratory analyses in a subset of 
cases and controls. The GSTM1 and XRCC1 
candidate SNPs were analyzed among 114 and 
116 cases, respectively, and among 1,064 and 
1,076 controls. We generated information on 
bulky DNA adducts for 115 cases and 1,072 
controls. In contrast with previously published 
reports for GEN-AIR (Vineis et  al. 2006, 
2007), our analysis explored jointly genetic 
and environmental covariates. It was there-
fore important that a large proportion of sub-
jects in the analyzed sample had fully observed 
genetic and environmental profiles. This is 
why we only used the intersection of genetic 
data and environmental data on traffic-related 
pollutants. For the profile regression analysis, 
we included 829 nonsmoking subjects (83 
lung cancer cases and 746 controls) with full 
information on genetic variants, physical activ-
ity, BMI, and residential proximity to a main 
road. PM10 measurements were not available 
for 284 of these subjects (20 cases and 264 
controls), including 49 (8 cases and 41 con-
trols) that also lacked information on expo-
sure to NO2. However, following the usual 
Bayesian paradigm, we stochastically imputed 
missing PM10 and NO2 data during the Gibbs 
sampling stage, as part of the simulation of the 

joint posterior distribution of all unknown 
quantities. This allowed us to include partici-
pants with incomplete environmental data 
while accounting for the uncertainty generated 
by the imputation of their exposure data.

Other statistical methods we employed 
(multivariate logistic regression using stepwise 
selection, MDR, CART) require data sets 
with no missing observations. Because of the 
missing PM10 observations, we based analyses 
with these methods on a reduced data set of 
545 subjects (63 lung cancer cases and 482 
controls) with complete PM10 data. When we 
considered one covariate at a time with simple 
univariate logistic regression, we had 545 sub-
jects for investigating exposure to PM10, 780 
subjects for investigating exposure to NO2, 
and 829 subjects for all other covariates; see 
Table 1 for a list of all risk factors included in 
our analysis.

Profile regression analysis. Profile regres-
sion revealed a typical grouping for the 829 
subjects that consisted of three main sub-
populations, with posterior means for the θk 
parameters varying from θ3 = 0.09 in group 
3 to θ1 = 0.15 in group 1 (Figure 1). Because 
there was no predetermined baseline group 
in our analysis, we contrasted the odds of 
groups 1 and 2 with the odds of group 3, the 
group with the lowest θk. For group 1, which 
comprised 96 subjects, the probability that 
θ1 was higher than the average risk in the 
sample was 0.94. The OR comparing group 1 
with group 3 [OR(θ1, θ3)] was 1.71, and the 
probability that this OR was > 1 was 0.95, 
giving a clear indication that group 1 was a 
high-risk group. Group 2 (112 subjects) was 
associated with moderate risk, with a prob-
ability of 0.72 that θ2 was higher than the 

average risk in the sample, and OR(θ2, θ3) = 
1.3, P[OR(θ2, θ3) > 1] = 0.8. Group 3 con-
tained a large number of subjects (621 out 
of 829) and was associated with a low risk 
of lung cancer relative to the population as 
a whole, with P(θ3 < θ– ) = 0.94. In the analy-
sis presented here, we did not adjust for any 
additional covariates. Adjustment for the 
five matching variables [sex, age ± 5 years, 
smoking status (never or former), country 
(Greece, Italy, Spain, France vs. Germany, 
Netherlands, England, Sweden, Denmark, 
Norway), and follow-up time (end of fol-
low-up is defined as date of censoring, death, 
emigration, or diagnosis, whichever came 
first)], using the logistic regression formula-
tion of the disease submodel produced com-
parable results [see Supplemental Material, 
Table 1 (doi:10.1289/ehp.1002118)].

Figure 1 provides a graphical representa-
tion of the covariate profile associated with 
each group, including 95% credible intervals 
for the difference between the probability ϕ p

k (x) 
of each value x of covariate p in group k and 
the corresponding average probability ϕ—p (x) 
in the whole population. A positive difference 
means that the characteristic was more com-
mon in this subgroup than in the population 
as a whole, and a negative difference means 
that the characteristic was less common. For 
example, the 95% credible interval for high 
exposure to NO2 in group 1 is > 0 (0.44, 
0.86), indicating that this group was charac
terized by subjects who are more likely to have 
high exposure to NO2 than the overall popula-
tion. Overall, group 1 included subjects who, 
on average, are more likely to live on a main 
road and be exposed to PM10 > 30 μg/m3 and 
NO2 > 40 μg/m3 than is the population as a 

Table 1. Risk factors included in the profile regression analysis.

Risk factor Categories
Exposure to pollution due to heavy traffic 0, subject does not live on a main road

1, subject lives on a main road
Exposure to PM10 0, < 30 μg/m3

1, 30–40 μg/m3

2, > 40 to 50 μg/m3

3, > 50 μg/m3

Exposure to NO2 0, < 30 μg/m3

1, 30–40 μg/m3

2, > 40 μg/m3

Physical activity at work 0, sedentary occupation
1, standing occupation
2, manual work
3, heavy manual work

Physical activity at leisure 0, 1, 2, with increasing activity from 0 to 2
BMI 0, normal weight

1, overweight
2, obese

Deletion polymorphism in GSTM1 0, wild type
1, deletion polymorphism

Polymorphism in the XRCC1 DNA repair gene 0, wild type
1, heterozygous or homozygous variant

Information on bulky DNA adducts 0, not detectable
1, < median
2, > median
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whole but who are comparable to the rest of 
the study population with regard to physical 
activity, BMI, GSTM1 and XRCC1 classifica-
tion, and bulky DNA adducts. Group 2 was 
characterized by subjects less likely than the 
overall population to be exposed to the low-
est levels of PM10 and NO2 but more likely 
to be exposed to 30–40 μg/m3 PM10 and 
30–40 μg/m3 NO2, and who were comparable 
to the overall population with regard to higher 
levels of PM10 and NO2 exposure. Other 
covariates in this group were comparable to 

the overall population, except that it included 
a relatively high proportion of manual work-
ers. The low-risk group 3 was characterized 
by subjects who were less likely to live near 
a main road and more likely to have lower 
PM10 and NO2 exposures than was the overall 
study population. [See Supplemental Material, 
Figure 1 (doi:10.1289/ehp.1002118), for a 
visual two-dimensional representation of the 
clustering presented in Figure 1.]

In general, the two genetic factors and 
DNA adducts did not appear to contribute to 

the formation of the groups. When we com-
pare the genetic profile of subjects in groups 
1 and 2, we see that the lower risk group 2 
contains a slightly higher than average propor-
tion of subjects with the protective GSTM1 
marker and a slightly higher than average pro-
portion of subjects with nondetectable DNA 
adducts. Increased DNA adduct levels in 
never-smokers have been associated in the liter-
ature with a variant in the XRCC1 DNA repair 
gene (Matullo et al. 2001), but this effect is not 
clearly present in our analysis. Finally, increased 
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Group 1: θ1 = 0.15, P(θ1 > –θ) = 0.94, OR(θ1, θ3) = 1.71, 95% credible interval = 0.90–2.85, P(OR > 1) = 0.95, n = 96 (13 cases)

Group 2: θ2 = 0.12, P(θ2 > –θ) = 0.72, OR(θ2, θ3) = 1.30, 95% credible intervaI = 0.70–2.20, P(OR > 1) = 0.80, n = 112 (12 cases)

Group 3: θ3 = 0.09, P(θ3 < –θ) = 0.94, n = 621 (58 cases)

Figure 1. Profile regression output: 829 subjects analyzed with average risk. Abbreviations: bmi, BMI; gstm1, GSTM1 gene; mainroad, residential proximity to a main 
road; no2, exposure to NO2; pa-leis, physical activity at leisure; pa-work, physical activity at work; pm10, exposure to PM10; ralc, bulky DNA adducts; xrcc1, XRCC1 
gene. For each covariate and each category, we provide the 95% credible interval for the difference between the probability ϕp

k (x) of attribute x in group k, and the 
corresponding average probability ϕ

——p  (x) in the whole population. Credible intervals are presented as bars. Green indicates that zero is contained in the 95% credible 
interval; red (blue) indicates positive (negative) credible intervals that exclude zero.
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levels of DNA adducts (above median) do not 
seem to have an adverse effect for subjects in 
group 3 with a low-risk environmental profile.

We also used profile regression to evalu-
ate a reduced data set that we restricted to 
observations with complete PM10 data (545 
subjects: 63 cases and 482 controls), so that 
we analyzed the same observations as for the 
other methods without imputation of the 
missing PM10 data. Results of this analysis 
were virtually identical to those based on the 
larger data set [see Supplemental Material, 
Table 2 (doi:10.1289/ehp.1002118)].

MDR and classification tree analysis. 
Analysis using MDR indicates that a model 
including PM10 and DNA adducts is more 
predictive of the outcome than all other alter-
natives (Table 2). However, the graphical rep-
resentation of how these two factors combine 

to influence the risk of lung cancer does not 
allow for a clear interpretation (Figure 2). 
Also, the low cross-validation consistency for 
this combination (6 of 10) indicates consider-
able uncertainty in choosing the overall best 
combination.

Figure 3 presents the output from CART. 
The covariates that form the tree are PM10, 
BMI, living on a main road, and GSTM1. 
The other factors were deemed to be insignifi-
cant in reducing misclassification error and 
were removed during the pruning procedure 
described above (see “Statistical methods”). 
The results suggest that participants with 
PM10 exposures > 40 μg/m3 were at greater 
risk than those with PM10 < 40 μg/m3, which 
is consistent with the profile regression analy
sis. However, among subjects with PM10 
exposures > 40 μg/m3, those living on a main 

road appeared to have a lower risk of lung 
cancer than those who did not live on a main 
road. Note the small number of observations 
in this node (we compared 14 subjects who 
lived on a main road with 6 who did not live 
on a main road) and the lack of any uncer-
tainty evaluation. In addition, NO2 was not 
selected as a predictor in the formation of the 
tree. These later results are not consistent with 
a priori expectations.

Logistic regression analysis. Individually, 
p-values ranged between 0.094 for physical 
activity at work and 0.914 for XRCC1 [see 
Supplemental Material, Table 3 (doi:10.1289/
ehp.1002118)], whereas no risk factor was 
selected in a multivariate logistic regression 
with forward or backward selection as model 
choice tool. Finally, no two-way interactions 
were significant, again using forward or back-
ward selection.

Model fit. A small exercise on model fit, 
presented in the Supplemental Material, sec-
tion S2 (doi:10.1289/ehp.1002118), indicates 
that profile regression’s ability to reveal appar-
ent complex effects does not come at a cost 
for goodness of fit.

Discussion
Profile regression has been developed to ana-
lyze complex data sets in which multiple 
risk factors are likely to interact in the eti-
ology of common multifactorial diseases. 
We extended profile regression to the case– 
control study design, allowing for the analy-
sis of ordinal risk factors and the computa-
tion of posterior ORs. The profile regression 
approach overcomes some of the main limi-
tations of traditional regression methods, 
like the large number of parameters required 
when all possible interactions are investi-
gated and problems with inference and inter-
pretation in the presence of collinearity. In 
the analyzed data, logistic regression analysis 
(using backward or forward selection algo-
rithms) revealed no statistically significant 
single or joint effect estimates. In contrast, 
profile regression identified combinations of 
covariates that formed subgroups associated 
with higher or lower risks.

Criticism of MDR focuses mainly on 
interpretation issues (Manuguerra et  al. 
2007). Also, when the data are sparse, MDR 
can be adversely affected, because of the algo-
rithm’s inability to estimate prediction error. 
This leads to MDR finding solutions with low 
prediction error even when no such solution 
exists (Vineis et al. 2008). Low cell counts 
are less of a problem for profile regression 
because inference is based on cluster-specific 
parameters rather than on cell-specific quanti-
ties. Results of the classification tree analysis 
differed from profile regression and were not 
always consistent with a priori expectations. 
Factors included in a resulting tree, as well as 

Table 2. MDR results (545 subjects). 
Model Prediction accuracya CVCb

ralc 0.50 7/10
ralc, pm10 0.53 6/10
paleis, pawork, no2 0.50 5/10
paleis, pm10, ralc, bmi 0.45 5/10
paleis, ralc, bmi, no2, pawork 0.48 6/10
paleis, ralc, bmi, no2, pawork, x1 0.50 9/10
paleis, ralc, bmi, no2, pawork, gstm1, x1 0.50 6/10
paleis, ralc, bmi, no2, pawork, gstm1, x1, mainroad 0.50 5/10
paleis, ralc, bmi, no2, pawork, gstm1, x1, mainroad, pm10 0.50 10/10

Abbreviations: bmi, BMI: gstm1, GSTM1 gene; mainroad, residential proximity to a main road; no2, exposure to NO2; 
paleis, physical activity at leisure; pawork, physical activity at work; pm10, exposure to PM10; ralc, bulky DNA adducts; 
x1, XRCC1 gene. 
aAn estimate of the predictive ability of the corresponding p-factor combination, produced with 10-fold cross-validation. 
bNumber of times a specific p-factor combination was identified as best in the 10 testing sets during the 10-fold cross-
validation procedure. 

Figure 2. MDR graphical representation of how PM10 and relative adduct labeling combine to affect risk, 
derived with the standard MDR open-source software. Darker shading indicates combinations where the 
ratio of controls to cases is higher than 0.1156, the average control:case ratio in the sample.
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its shape, are sensitive to the choice of criteria 
used to build and prune a classification tree, 
and this choice is often not straightforward. 
In addition, this type of analysis allows for no 
evaluation of the overall uncertainty.

In previous GEN-AIR analyses, numer-
ous researchers found that NO2 and DNA 
adducts (an intermediate marker of carcino-
genesis) were statistically significant predic-
tors of lung cancer in nonsmokers in the 
same cohort (Peluso et al. 2005; Vineis and 
Husgafvel-Pursiainen 2005; Vineis et  al. 
2006, 2007). However, because of small 
numbers, it was difficult to estimate the joint 
effect of multiple exposures, and no statisti-
cally significant effect of PM10 was shown 
(Vineis et  al. 2006; we categorized PM10 
using tertiles with the lower two tertiles as 
the reference category, and we included other 
potential confounders in the model), which 
was at odds with previous literature (Beeson 
et al. 1988; Dockery et al. 1993). The pro-
file regression analysis indicated that higher 
NO2 and PM10 exposures and residential 
proximity to roads were more common in the 

high-risk group. Thus, the profile regression 
findings for PM10 were in agreement with the 
literature. Moreover, inspecting the genetic 
profile of the subjects in groups 1 and 2 in 
Figure 1 gave us an indication, albeit a very 
weak one, of how the presence of the genetic 
marker GSTM1 and the number of DNA 
adducts may reduce the risk for lung cancer 
for subjects exposed to air pollution and other 
environmental attributes. This possible pro-
tective effect should be examined in further 
studies of gene–environment interactions, 
which would focus on studying the effect of 
mixtures of air pollutants and their potential 
interaction with genetic susceptibility, par-
ticularly in pathways involved in DNA repair 
or xenobiotic metabolism.

Conclusion
We propose that profile regression is a power-
ful and complementary tool to classical analy-
sis strategy when the focus of the analysis is 
to characterize the joint effect of multiple risk 
factors in multifactorial diseases and to iden-
tify exposure risk profiles of importance.
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Figure 3. Classification tree using the “gini” impurity criterion. Pruning is done with 5-fold cross-validation. 
The average risk in the sample is 0.1156. n denotes the number of subjects corresponding to a terminal 
node. Values for P(cancer) indicate the average probability that a member of the subgroup will be a case.
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